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Abstract: Lipids contain fatty acids as fundamental components and their boiling and melting
temperatures matter significantly for industrial uses. The researchers employed the Quantitative
Structure-Property Relationship (QSPR) method for predicting melting and boiling points in fatty
acids along with their derived substances. Measuring properties of chemical structures with
molecular descriptors enabled the development of QSPR models that received validation by
experimental results. During the training phase the predictive accuracy reached high levels as the
coefficients of determination (R2) values turned out to be 0.948 for melting points and 0.938 for
boiling points. The cross-validation validation produced R? values at 0.925 for estimating melting
points and also 0.925 for estimating boiling points which shows robust predictive capability. Due to
their reliable nature QSPR models exhibit strong performance in predicting thermal characteristics of
fatty acids for uses in biodiesel production as well as food processing and cosmetics industries.
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1. Introduction

Lipids represent organic compounds which fail to dissolve in water
but contain oil and fats together with carbon hydrogen and oxygen
as their main chemical substances [1]. Lipids join nucleic acids
carbohydrates along with proteins to become one of the key
macromolecules which exist in the human body. Lipids differ from
other macro macromolecules by lacking polymer structure and
monomer composition which separates them from typical
structural characteristics. Hydrocarbon manacles that contain (-
CH2-CH2-CH2-) within their molecular structure show
hydrophobic properties because they appear frequently in
biochemical structures [2]. Lipids perform their essential biological
functions as building blocks for cell membranes and energy
reservoirs as well as signal transmitters in various crucial
biological operations [3].

Comprising elongated hydrocarbon chains between 4 and 36
carbons and a single carboxyl group, fatty acids are the most basic
type of lipids. Many complicated lipids consist of these molecules,
which are hence crucial components. In organic settings, fatty
acids usually show an even amount of carbon particles; 16-18
carbon greasy acids are most shared [4]. As a result, the body
might produce saturated fatty acids (SFAs), which are fats without
double bonds. Foods produced from animals, such as red meat,
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poultry, and full-fat dairy products, are the main dietary sources.
The word saturated describes a molecule in which every carbon
atom has as many hydrogen atoms as feasible. Many saturated fatty
acids possess both a common name and a chemically descriptive
systematic name [5].

Molecules that contain unsaturated fatty acids develop one or more
(bends) from their hydrocarbon chain because they incorporate one
or more double bonds. Unsaturated natural fatty acids show a cis
double bond configuration as their basic geometric structure. The
molecular grouping of these substances proves to be ineffective.
Intermolecular interactions between molecules possess much
weaker strength than those observed in saturated molecules.
Unsaturated fatty acids present lower melting points in comparison
to other types of fatty acids [6]. These fatty acids stay in liquid
form when the environment reaches normal temperature [7]. The
melting points of fatty acids experience changes from two key
factors which are chain length and amount of unsaturation found in
the hydrocarbon chains. Temperature conditions typical for human
rooms transform saturated fatty acids between 12:0 and 24:0 into
waxy solid masses. Similar fatty acids with the same carbon chain
structure exist in liquid form because their molecular arrangements
differ somewhat among the fatty acid molecules. Unrestricted
rotation of carbon-carbon bonds throughout saturated fatty acids
allows their hydrocarbon chains to become highly flexible thereby
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lowering the steric hindrance. The crystalline formation of
molecular structures occurs from Van der Waals forces but
unsaturated fatty acid cis double bonds create chain flexion which
blocks dense packing [8]. Their decreased molecular interaction
with similar chain length saturated fatty acids leads to reduced
melting temperatures throughout their structure [36]. Animals fats
demonstrate higher saturated fatty acid content compared to
vegetable oils which produces increased melting points.

Long-chain fatty acids have a markedly low vapor pressure, which
escalates as the chain length diminishes. Vegetable oils mostly
consist of triglycerides containing long-chain fatty acids, resulting
in very low vapor pressures; for instance, soybean and olive oils
have vapor pressures of 0.001 and 0.05 mm Hg at 254 and 308°C,
respectively [9]. Fatty acids have significant volatility;
monoglycerides possess a considerably greater vapor pressure.
Consequently, these hydrolytic cleavage products provide a source
of smoke derived from fried oil waste to solve this problem,
chemometrics calculation methods can be useful. The statistical
and mathematical analysis of chemical data is usually referred to as
chemometrics. In other words, chemometrics is an efficient method
for summarizing useful information from a specific data series and
predicting other data series. In fact, the goal of chemometrics is to
improve measurement processes and extract more useful chemical
information from physical and chemical measured data [10].
Chemometrics is used in various branches of chemistry, some of
these applications include process control, analysis and recognition
of patterns, signal processing and optimizing conditions. One of
the important fields of application chemometrics is in studies that
relate the properties of molecules to their structural characteristics
[11]. The purpose of QSAR studies is to find the relationship
between the physicochemical behavior of a molecule and its
structural parameters. The results of these studies, in addition to
clarifying the relationship between the properties of molecules and
their structural characteristics, help researchers predict the behavior
of new molecules based on their behavior, as similar molecules
help [12].

Lemaoui et al. [13] established a molecular-based method to
forecast eutectic solvent pH values during their investigation for
efficient green solvent development. This research follows a
similar predictive approach to the work presented in our research.
The research field of sustainable solvents matters to both academic
researchers and business operations. The increasing scientific
comprehension of typical organic solvent dangers has led experts
to create multiple environmentally conscious safer solvent
replacements. This research employed two prediction algorithms
through multiple linear regression (MLR) and artificial neural
network (ANN) to determine pH levels of ESs while utilizing
chemical descriptors from COSMO-RS database. A total of 648
experimental points were used for adequate data representation
because they included 41 chemically different ESs derived from
combinations of 9 HBAs with 21 HBDs at various temperatures.
The analysis indicates that both prediction methods show powerful
capabilities in new ESs pH forecasting though the ANN method
provides stronger predictive strength and the MLR method offers
better interpretability. These predictive models can reduce time and
expenses by forthcoming the characteristics of designed solvents
based on provided molecular sketches. Fitranda et al. [14] studied
antibacterial properties of castor oil and its derivatives and their
physicochemical characteristics. The obtained substances included
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K-soap (solid white form with melting point range 168-175°C) and
free fatty acids (liquid yellow substance that boils at 210°C with
density of 0.98 g/mL and refractive index 1.46 and viscosity
693.22 cSt and containing 145.88 (mgKOH/g) acids, 294.52
(mgKOH/g) saponification, and 148.64 (MgKOH/qg) ester values)
along with fatty acids methyl esters (liquid yellow material having
170°C boiling point). The researchers designed a precise melting
temperature estimation model by using molecular weight and
carbon-carbon double bond counting as descriptive elements in the
HSVR framework. The development process for the HSVR-based
model consists of two distinct parts. The testing phase for SVR
model evaluation uses descriptors consisting of double carbon
bond counts and molecular weights within a test-set-cross
validation environment. In the second step researchers conduct
more SVR training and testing through utilization of melting point
predictions computed during the initial phase. The proposed hybrid
system achieves better generalizing and forecasting abilities than
traditional SVR would perform. The HSVR-based model achieves
greater precision in determining the melting points of sixty-two
fatty acids than existing predictive models such as Guendouzi and
Guijie et al. models [15].

2. Experimental work
2.1. QSPR method

Quantitative structure property relationship (QSPR) method,
utilized in computational chemistry [16], enables the prediction
and estimation of molecular properties based on their structural
features. For fatty acids, QSPR can predict their melting points
(mp) and boiling points (bp) by analyzing their molecular
structures [17]. To achieve this, a dataset containing information
on various fatty acids, including their molecular structures and
experimentally measured melting and boiling points, is collected.

The molecular structures are then converted into numerical
representations called molecular descriptors, which quantify
different features of the molecules. These descriptors serve as input
variables for developing a QSPR model. Statistical and machine
learning techniques are employed to establish the relationship
between the molecular descriptors and the melting and boiling
points of fatty acids in the dataset. The QSPR model is trained
using this data and validated using a separate set of fatty acids not
used during model development to ensure accurate predictions for
unseen fatty acids. Once validated, the QSPR model can predict the
melting and boiling points of new or unmeasured fatty acids based
on their molecular structures [18].

The outcome of these predictions depends on three elements: high-
quality dataset selection and appropriate descriptors along with
reliable statistical or machine learning algorithms. The
QSAR/QSPR approach uses CODESSA 3.3.1 software package to
predict melting and boiling points through its function as an
encoded developed tool according to this research. A QSPR
modeling within CODESSA performs multilinear regression
analysis with up to 50 separate molecular descriptors that cover
constitutional as well as morphological and topological and
electrostatic and quantum chemical and thermodynamic factors.
The electrical descriptors describe molecular dipole moment
together with the internal distribution of negative charges whereas
topological descriptors reveal atomic quantities and their types and
connection patterns.
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2.1.1. The methodology based on QSPR

The procedure of utilizing QSPR method was summarized in Figure 1.

Figure 1. The procedure of the present work to estimate boiling point and melting point of different fatty acids.
2.2. Datasets

The data set provided for the boiling points were presented in Table 3.1. In the cases of melting point, we utilized the dataset provided in the Ref.
[19]. An example from these datasets were presented in Table 1 and Table 2

Table 1. The experimental boiling points (bps) of 26 studied fatty acids [20-21].

Class Fatty acid Boiling points (oC)
A Isoamy Laurate 132.10
B Caproic 205.8
C Caprylic 239.7
A Methyl laurate 255.14
B Capric 260
C Lauric 298.9
A Ethyl palmitate 309.13
B Ethyl linoleate 319.16
C Myristic 326.2
A Ethyl oleate 331.52
B Ethyl ricinoleate 344.01
C Palmitic 3515
A Stearic 3711
B Triolein 414.91
C Tripalmitin 412.69
A Methyl laurate 263
B Methyl myristate 296
C Methyl palmitate 338
A Methyl stearate 351
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B Methyl oleate 351
C Methyl linoleate 351
A Methyl linolenate 351
B Methyl arachidate 370
C Methyl behenate 387
A Methyl erucate 406
B Methyl lignocerate 407

Table 2. The experimental melting points (mp) of different fatty acids. More experimental data was extracted from Ref. [19]

Class Fatty acid Melting points (oC)
A 3-7-11-15-Tetramethylhexadecanoic acid -65.0
B Cis-cis-cis-cis-6-9-12-15-Octadecatetraenoic acid -57.0
C Cis-cis-cis-cis-5-8-11-14-Eicosatetraenoic acid -49.0
A Cis-cis-cis-cis-cis-cis-4-7-10-13-16-19-Docosahexaenoic acid -45.0
B Pentanoic acid -33,0
C 3-Methylbutanoic acid -29.0
A Cis-cis-cis-9-12-15-Octadecatrienoic acid -11.0
B Cis-cis-9-12-Octadecadienoic acid -7.0
C Heptanoic acid -7,0
A Butanoic acid -5.0
B Cis-9-Tetradecenoic acid -4,0
C Cis-cis-5-13-Docosadienoic acid -4,0
A Hexanoic acid -3,0
B cis-9-Hexadecenoic acid 0,0
C 12-Hydroxy-cis-9-octadecenoic acid 5,0
A Nonanoic acid 12,0
B cis-9-Octadecenoic acid 13.0
C cis-11-Octadecenoic acid 15.0
A Octanoic acid 16.0
B cis-trans-9-11-Octadecadienoic acid 20,0
C trans-cis-10-12-Octadecadienoic acid 23.0
A cis-11-Eicosenoic acid 240
B cis-9-Eicosenoic acid 24,0
o 9-Decenoic acid 26.0
A cis-5-Eicosenoic acid 26.0
B Undecanoic acid 28,0
o cis-6-Octadecenoic acid 29.0
A Decanoic acid 31.0
B cis-12-13-Epoxy-cis-9-octadecenoic acid 32.0
Cc trans-trans-cis-9-11-13-Octadecatrienoic acid 32,0
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The initial and most crucial step in QSPR modeling involves the
collection and selection of a desirable data set that can be
determined from a chemical family with the laboratory-measured
property of interest, under consistent conditions of pressure and
temperature, and with high precision measurements. It is essential
to ensure that the experimental errors are not significant, as an
accurate and reliable model relies on precise measurements, and
lower measurement errors improve the predictability of the model
[17].

Another vital consideration in dataset selection is to ensure that it
is sufficiently extensive and diverse. Larger datasets lead to the
development of more robust predictive models, while greater
diversity in compounds enables the model to effectively predict a
wider range of substances. Therefore, key criteria for a satisfactory
QSPR model include [22]:

a: Diversity of the dataset together with adequate size.

b: Measurements which often were conducted under consistent and
reproducible conditions.

The QSPR modeling of forecasting the boiling point and melting
point of fatty acids utilizes relevant data from Tables 1 and 2. This
document demonstrates how the graphical user interface of
ChemBioDraw Ultra version 12.0 produced three-dimensional
molecular representations.

2.3. Multiple linear regression (MLR) analysis

In this work, the multiple linear regression (MLR) analysis was
utilized for investigating the relationship that stands among the
response variable and predictor variables and also for estimating
the response variable according to the predictor variables. MLR fits
a linear model of the form as following Eq (1)[23]:

Y=b0+b1X1+b2X2+~~-kak+e (1)

The dependent variable appears as Y while the independent
variables appear as X1, X2,..., Xk together with e being the random
error and b0, bl, b2,..., bk indicating the estimable regression
coefficients. During the MLR approach the selection process
chooses regression coefficients which minimize the square value of
estimation-observation  discrepancies. The primary task in
multilinear regression involves obtaining the optimal regression
coefficient estimations (b0, b1, b2, . . ., bk) to reduce the error sum
(e) while achieving the most accurate data match. The calculation
happens through several statistical methods with the least squares
method being among them.

Multiple Linear Regression serves numerous research domains
including economics and social sciences and engineering and data
science to discover predictive patterns from several predictor
variables [24-26]. Scientists can use this method to determine
independent variable contributions separately as well as understand
their combined influence on the dependent variable [27].

2.4. Validation and verification

Regarding validation and verification of the used models in this
study, some analysis was incorporated in verifying the correctness
of the correlations and using them to estimate bp and mp attributes.
It usually consists of elements similar to other various training sets
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as well as well recognized qualities based on experimental
evidence. By means of a comparison between the projected data
against experimental information derived from the literature, one
may investigate and assess the predictive power of the correlation .

One may evaluate the predictive capacity of the correlations by
using two regression correlation coefficients of the cross-validation
R2cv as well as R2.Popularly used and quite useful for evaluating
the dependability of statistical methods was the cross validation
R2cv. In this process, updated data sets were created by
eliminating one or group of objects in every case as well as for
every statistics set using an input-output model based on the
applied approach. Its precision helps one to project the reactions of
the residual data, so influencing also.

The R2adj (attuned coefficient of a manifold linear regression
determination) model has been introduced as terms of the
coefficient of determination as the following relation [28]:

n—1 2
Rgdjz1—(1—122)7n_p_1 @

Considering a data set, where ni stands for the number of
compounds, and pi shows the number of descriptions.

3. Results

Many non-empirical molecular descriptors may be obtained
using the Codessa software applied in current work. We considered
the preliminary regression analysis and derived the complete
original Codessa descriptors. Furthermore used was the BMLR
regression, thus the pool of the descriptors gets even smaller. With
regard to BMLR correlations for all the included substances, the
primary goal was to find the ideal number of descriptors which fit
the instance of data given in Table 1 and Table 2. At last, suitable
equations for varying numbers of descriptors were discovered.
Respectively, Figure 4.1 and 4.2 exhibits the behavior of
descriptors on the R2 as well as R2adj for bp andmp parameters.
As advised in the Ref. [19], the R2 values lower than 0.02 is
chosen to serve as a breakpoint criteria to prevent from the over
parameterization .

Table 3 and Table 4 present the several used elements in the
instance of bp andmp prediction derived from the QSPR
approaches. The models for MP and bp were constructed using
training sets of 62 and 30 fatty acids, respectively. The optimal
QSPR equations are characterized by the subsequent equations:

The molecular descriptors in both models were considered as
follows:

A2 and B2 (PPSA-3 atomic charge)

A3 and B3 (The number of aromatic bonds),

A4 and B4 (Mean complementary information content),
A5 and D5 (Balaban index),

A6 and D6 (YZ Shadow) and

A7 and D7 (Min atomic orbital, electronic population, and Boiling
points (property)),
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Table 3. Effective parameters in the use of QSPR for 30 data related to mp (X shows regression coefficients, AX error, t-Test, and p-Values).

.R? = 09312, AdjustedR® = 0928, Std.E.E:14.0281

M:
Factors X X2-X1 t-Test p-Value
Intercept 202.895 21.25 4.235
A2 (cofficianent -2.125 o -13 -3
(coffici ) 0.001 =10
A3 16.5 it 24.23 -3
0.001 <10
Ad -1.114 E% 24 -3
0.001 <10
A5 0.256 fend 12.23 -3
~0.001 <10

Table. 4. Effective parameters in the use of QSPR for 30 data related to bp

M- R? = 09482, AdjustedR* = 0.9387, Std.E.E:12

Factors X X2-X1 t-Test p-Value
Intercept 142 26.523 5.654

B3 (cofficianent) -8.256 %0.002 32.251 < 10™%
B4 -12.589 * 0000 -4.985 = 10%
B5 -8.54 R 000 -23.251 =104

Figure 2 shows the R2 obtained for different number of descriptors in the case of bp prediction. As can be seen, when the number of descriptors
increased to 7, the R2 was obtained around 0.938 which can be sufficient and appropriate. As same Figure was provided to mp and the max R2
was obtained around 0.948.
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Figure 2. The R2 obtained for different number of descriptors in the case of mp prediction.
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Figure 3. The R2 obtained for different number of descriptors in the case of bp prediction.

As can be seen, we have considered a same parameter to
evaluate the commonalities and differences between parameters.
According to the t-test values, in the case boiling point and melting
point, A3 and B3 showed to have the most influences. It is found
that the most important factor for both mp and bp is the number of
aromatic bonds. Then, in the case of boiling point A5 has a more
effect and for melting point B5 is the most important parameters.
In the case of both bp and mp factors, the value of linear
correlation coefficient was determined to be less to 0.5 (among two
different descriptors). Hence, one can presume that the considered
descriptors A2, A3, A4 and A5 as well as B2, B3, B4 and B5 are
independent, mutually, considering the utilized QSPR method.
Therefore, it is found that the 7-parameter model for mp and bp
demonstrated satisfactory statistical data correlation coefficient.

In previous studies, two different methods have been proposed to
validate the QSPR model [64]. The initial approach involves
utilizing a subset of the available data to develop the model, taking
into account the data in the bp and mp scenarios referred to as
external validation. The subsequent approach entails employing the
entirety of the data points to construct the model while reserving
the validation method for internal cross-validation procedures. As
suggested by in Ref. [45], the second approach was utilized based
on the following stages:

(1) Have ordered the obtained points for both bp an mp data.

(2) In the case of mp, 30 data points were considered and ordered
in three subsets (A—C) and the same was considered for bp with 30
data.

(3) Based on these information, we provided new datasets,
considering whole combinations of the binary sums, including (A +
B), (A + C) and (B + C). This dataset was utilized for training tasks
due to the limitation of data for both bp and mp.

(4) After that the standard modeling approach of QSPR method
consisting of the most important multiple linear regression method
(B-MLR) has been taken into consideration for the three datasets
mentioned the previous stage. In addition, considering each
training set, we drive the correlation equation with the same
descriptors corresponding to introduced models

(5) The classical internal cross validation approach was then used
to validation tasks.

Eqg. (3) and Eq. (4) demonstrated the boiling point and melting
point that are considerably related to sets of molecular descriptors,
including topological and electrostatic properties. As mentioned
different initial models firstly were evaluated based on statistical
analysis the data provided previously and the mentioned relations
were selected for analysis.

Between all data, for mp 30% of data was utilized to train the
model and for bp this procedure was applied and the results were
taken into account for external validation datasets. The QSPR
efficiency was considered in the case of prediction tasks using the
R2adj. The mean values of adjusted R2(Fit) and R2(Pred) were
determined to be near to 0.913 and 0.925, respectively.

After initial investigations, it was determined that the following
relations:

bp = —20123.4 + 1462.2x A1—-0.8 X A2—-52 XxA3-58 A4+ (3)

0.3 X A5-54 x A6+35878 x A5

mp = —72.58 + 25.89 X B; + 42.23 X B, — 32 X Bs — 1.89 X B, + 258955 x B,  (4)

Figure 4 and Figure 5 show the comparison between experimental against predicted data for bp and mp, respectively that can be used to detect

any outliers and to prompt indication of the accuracy.
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Figure 4. The comparison of experimental data against predicted data for bp
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Figure 5. The comparison of experimental data against predicted data for mp

Tables 5 and 6 show the different QSPR models obtained using 5- parameter models for bp and mp, respectively. The models were established
using training set consisted of 30 and 26 data in cases of bp and mp constituted, respectively.

Table 5. QSPR validation for 5-parameter model related to bp prediction

Training data N R2 Test set N R2(pred)
A+B 18 0.932 C 8 0.941
A+C 17 0.937 B 9 0.952
B+C 17 ~0.94 A 9 0.962

Table 6. QSPR validation for 5-parameter model related to mp prediction

Training data N R2 Test set N R2(pred)
A+B 20 0.941 C 10 0.947
A+C 20 0.948 B 10 0.968
B+C 20 0.950 A 10 ~0.95
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In Table 5, the results obtained from the QSPR validation tasks
were evaluated in the case of the 5-parameter model efficiency to
predict bp. As can be seen Table was divided into two sections, the
first was Training data and the second was Test set showed the
performance of the model for different combinations of training
data (A, B, C) and the corresponding R2 values for each dataset.

(a): For the Training data section:

- Three combinations of training data are considered: A+B, A+C,
and B+C.

- N stands for the number of data points in each training set.

- R2 indicated the coefficient of determination, which can be
measured how well the model fits the training data. It quantifies the
proportion of the variance in the dependent variable (bp) that is
predictable from the independent variables (molecular descriptors).

- The R2 values for the three training sets are approximately 0.932,
0.937, and 0.940, respectively.

(b): For the Test set section:

- The table provides three different test sets: A, B, and C, each
containing a different number of data points.

- N represents the number of data points in each test set.

- R2(pred) shows the predictive R2, which measures how well the
model performs on unseen data, i.e., the ability to generalize to
new data points not used during training.

- The R2(pred) values for the three test sets were determined to be
0.941, 0.952, and 0.962, respectively.

Overall, the 5-parameter model demonstrated good performance in
predicting the boiling points of fatty acids. The R2 values for both
training and test sets were relatively high, indicating a strong
correlation between the molecular descriptors and the boiling
points. The model's predictive capability, as evidenced by the R2
(pred) values, showed that it can generalize well to unseen data,
providing reliable predictions.

Table 6 demonstrated the QSPR validation results for the 5-
parameter model related to melting point (mp) prediction. Similar
to the boiling point model, the 5-parameter model for melting point
prediction also showed strong performance. The high R2 values for
both training and test sets indicated a good correlation between the
molecular descriptors and the melting points. The R2(pred) values
demonstrated the model's ability to generalize well to new data,
making it a reliable predictor for the melting points of fatty acids.

As a results, the 5-parameter models for both bp and mp prediction
exhibited promising results, with high R2 values for both training
and test datasets. The models showed good predictive capabilities,
suggesting that they can be valuable tools for estimating the bp and
mp of fatty acids based on their molecular descriptors. However,
further external validation using independent datasets and
considering additional molecular descriptors could enhance the
models' reliability and generalization performance. The developed
QSPR model based on non-empirical molecular descriptors can
predict the boiling point and melting point of fatty acids. The
model was trained and validated using a dataset of various fatty
acids with known boiling and melting points. By providing the
QSPR model with a chemical structure of a fatty acid, it can
calculate the molecular descriptors for that compound and use
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them to predict its boiling and melting points. However, it is
essential to consider that the accuracy of the predictions may be
influenced by the similarity of the compound to those in the
training dataset. For accurate predictions, it is recommended to
validate the model's performance on external datasets or
experimental measurements of new and unseen chemical
structures . Therefore, the developed QSPR model can be utilized
as a tool for predicting the boiling and melting points of fatty acids
based on their molecular structures, but caution should be
exercised when applying the model to compounds significantly
different from those in the training data.

4. Conclusion

The Quantitative Structure-Property Relationship (QSPR) models
developed in this study provide reliable predictions for the melting
and boiling points of fatty acids and their derivatives. Using a
combination of molecular descriptors and multiple linear
regression (MLR), we successfully established predictive models
that correlate the chemical structure of fatty acids with their
thermal properties. The models demonstrated strong predictive
power, with high coefficients of determination (R?) for both
training and test datasets, reaching up to 0.948 for melting points
and 0.938 for boiling points. The cross-validation R2 values further
confirmed the robustness of the models, indicating their ability to
generalize well to unseen data. These findings highlight the
effectiveness of QSPR modeling in predicting the thermal
properties of fatty acids, offering a valuable tool for the design and
optimization of fatty acid derivatives in various industrial
applications. Future work could further enhance the model's
predictive accuracy by incorporating additional molecular
descriptors or expanding the dataset to include a broader range of
fatty acid derivatives.
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