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Abstract: Lipids contain fatty acids as fundamental components and their boiling and melting 

temperatures matter significantly for industrial uses. The researchers employed the Quantitative 

Structure-Property Relationship (QSPR) method for predicting melting and boiling points in fatty 

acids along with their derived substances. Measuring properties of chemical structures with 

molecular descriptors enabled the development of QSPR models that received validation by 

experimental results. During the training phase the predictive accuracy reached high levels as the 

coefficients of determination (R²) values turned out to be 0.948 for melting points and 0.938 for 

boiling points. The cross-validation validation produced R² values at 0.925 for estimating melting 

points and also 0.925 for estimating boiling points which shows robust predictive capability. Due to 

their reliable nature QSPR models exhibit strong performance in predicting thermal characteristics of 

fatty acids for uses in biodiesel production as well as food processing and cosmetics industries.  

Keywords: Fatty Acids, Quantitative Structure-Activity Relationship, Multiple linear regression, 

Multiple linear regression (MLR). 
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1. Introduction 

Lipids represent organic compounds which fail to dissolve in water 

but contain oil and fats together with carbon hydrogen and oxygen 

as their main chemical substances [1]. Lipids join nucleic acids 

carbohydrates along with proteins to become one of the key 

macromolecules which exist in the human body. Lipids differ from 

other macro macromolecules by lacking polymer structure and 

monomer composition which separates them from typical 

structural characteristics. Hydrocarbon manacles that contain (-

CH2–CH2–CH2–) within their molecular structure show 

hydrophobic properties because they appear frequently in 

biochemical structures [2]. Lipids perform their essential biological 

functions as building blocks for cell membranes and energy 

reservoirs as well as signal transmitters in various crucial 

biological operations [3]. 

Comprising elongated hydrocarbon chains between 4 and 36 

carbons and a single carboxyl group, fatty acids are the most basic 

type of lipids. Many complicated lipids consist of these molecules, 

which are hence crucial components. In organic settings, fatty 

acids usually show an even amount of carbon particles; 16–18 

carbon greasy acids are most shared [4].  As a result, the body 

might produce saturated fatty acids (SFAs), which are fats without 

double bonds. Foods produced from animals, such as red meat, 

poultry, and full-fat dairy products, are the main dietary sources. 

The word saturated describes a molecule in which every carbon 

atom has as many hydrogen atoms as feasible. Many saturated fatty 

acids possess both a common name and a chemically descriptive 

systematic name [5]. 

Molecules that contain unsaturated fatty acids develop one or more 

(bends) from their hydrocarbon chain because they incorporate one 

or more double bonds. Unsaturated natural fatty acids show a cis 

double bond configuration as their basic geometric structure. The 

molecular grouping of these substances proves to be ineffective. 

Intermolecular interactions between molecules possess much 

weaker strength than those observed in saturated molecules. 

Unsaturated fatty acids present lower melting points in comparison 

to other types of fatty acids [6]. These fatty acids stay in liquid 

form when the environment reaches normal temperature [7]. The 

melting points of fatty acids experience changes from two key 

factors which are chain length and amount of unsaturation found in 

the hydrocarbon chains. Temperature conditions typical for human 

rooms transform saturated fatty acids between 12:0 and 24:0 into 

waxy solid masses. Similar fatty acids with the same carbon chain 

structure exist in liquid form because their molecular arrangements 

differ somewhat among the fatty acid molecules. Unrestricted 

rotation of carbon-carbon bonds throughout saturated fatty acids 

allows their hydrocarbon chains to become highly flexible thereby 
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lowering the steric hindrance. The crystalline formation of 

molecular structures occurs from Van der Waals forces but 

unsaturated fatty acid cis double bonds create chain flexion which 

blocks dense packing [8]. Their decreased molecular interaction 

with similar chain length saturated fatty acids leads to reduced 

melting temperatures throughout their structure [36]. Animals fats 

demonstrate higher saturated fatty acid content compared to 

vegetable oils which produces increased melting points. 

Long-chain fatty acids have a markedly low vapor pressure, which 

escalates as the chain length diminishes. Vegetable oils mostly 

consist of triglycerides containing long-chain fatty acids, resulting 

in very low vapor pressures; for instance, soybean and olive oils 

have vapor pressures of 0.001 and 0.05 mm Hg at 254 and 308°C, 

respectively [9]. Fatty acids have significant volatility; 

monoglycerides possess a considerably greater vapor pressure. 

Consequently, these hydrolytic cleavage products provide a source 

of smoke derived from fried oil waste to solve this problem, 

chemometrics calculation methods can be useful. The statistical 

and mathematical analysis of chemical data is usually referred to as 

chemometrics. In other words, chemometrics is an efficient method 

for summarizing useful information from a specific data series and 

predicting other data series. In fact, the goal of chemometrics is to 

improve measurement processes and extract more useful chemical 

information from physical and chemical measured data [10].  

Chemometrics is used in various branches of chemistry, some of 

these applications include process control, analysis and recognition 

of patterns, signal processing and optimizing conditions. One of 

the important fields of application chemometrics is in studies that 

relate the properties of molecules to their structural characteristics 

[11].  The purpose of QSAR studies is to find the relationship 

between the physicochemical behavior of a molecule and its 

structural parameters. The results of these studies, in addition to 

clarifying the relationship between the properties of molecules and 

their structural characteristics, help researchers predict the behavior 

of new molecules based on their behavior, as similar molecules 

help [12].  

Lemaoui et al. [13] established a molecular-based method to 

forecast eutectic solvent pH values during their investigation for 

efficient green solvent development. This research follows a 

similar predictive approach to the work presented in our research. 

The research field of sustainable solvents matters to both academic 

researchers and business operations. The increasing scientific 

comprehension of typical organic solvent dangers has led experts 

to create multiple environmentally conscious safer solvent 

replacements. This research employed two prediction algorithms 

through multiple linear regression (MLR) and artificial neural 

network (ANN) to determine pH levels of ESs while utilizing 

chemical descriptors from COSMO-RS database. A total of 648 

experimental points were used for adequate data representation 

because they included 41 chemically different ESs derived from 

combinations of 9 HBAs with 21 HBDs at various temperatures. 

The analysis indicates that both prediction methods show powerful 

capabilities in new ESs pH forecasting though the ANN method 

provides stronger predictive strength and the MLR method offers 

better interpretability. These predictive models can reduce time and 

expenses by forthcoming the characteristics of designed solvents 

based on provided molecular sketches.  Fitranda et al. [14] studied 

antibacterial properties of castor oil and its derivatives and their 

physicochemical characteristics. The obtained substances included 

K-soap (solid white form with melting point range 168-175°C) and 

free fatty acids (liquid yellow substance that boils at 210°C with 

density of 0.98 g/mL and refractive index 1.46 and viscosity 

693.22 cSt and containing 145.88 (mgKOH/g) acids, 294.52 

(mgKOH/g) saponification, and 148.64 (MgKOH/g) ester values) 

along with fatty acids methyl esters (liquid yellow material having 

170°C boiling point). The researchers designed a precise melting 

temperature estimation model by using molecular weight and 

carbon-carbon double bond counting as descriptive elements in the 

HSVR framework. The development process for the HSVR-based 

model consists of two distinct parts. The testing phase for SVR 

model evaluation uses descriptors consisting of double carbon 

bond counts and molecular weights within a test-set-cross 

validation environment. In the second step researchers conduct 

more SVR training and testing through utilization of melting point 

predictions computed during the initial phase. The proposed hybrid 

system achieves better generalizing and forecasting abilities than 

traditional SVR would perform. The HSVR-based model achieves 

greater precision in determining the melting points of sixty-two 

fatty acids than existing predictive models such as Guendouzi and 

Guijie et al. models [15]. 

2. Experimental work 

2.1. QSPR method 

Quantitative structure property relationship (QSPR) method, 

utilized in computational chemistry [16], enables the prediction 

and estimation of molecular properties based on their structural 

features. For fatty acids, QSPR can predict their melting points 

(mp) and boiling points (bp) by analyzing their molecular 

structures [17]. To achieve this, a dataset containing information 

on various fatty acids, including their molecular structures and 

experimentally measured melting and boiling points, is collected.  

The molecular structures are then converted into numerical 

representations called molecular descriptors, which quantify 

different features of the molecules. These descriptors serve as input 

variables for developing a QSPR model. Statistical and machine 

learning techniques are employed to establish the relationship 

between the molecular descriptors and the melting and boiling 

points of fatty acids in the dataset. The QSPR model is trained 

using this data and validated using a separate set of fatty acids not 

used during model development to ensure accurate predictions for 

unseen fatty acids. Once validated, the QSPR model can predict the 

melting and boiling points of new or unmeasured fatty acids based 

on their molecular structures [18].  

The outcome of these predictions depends on three elements: high-

quality dataset selection and appropriate descriptors along with 

reliable statistical or machine learning algorithms. The 

QSAR/QSPR approach uses CODESSA 3.3.1 software package to 

predict melting and boiling points through its function as an 

encoded developed tool according to this research. A QSPR 

modeling within CODESSA performs multilinear regression 

analysis with up to 50 separate molecular descriptors that cover 

constitutional as well as morphological and topological and 

electrostatic and quantum chemical and thermodynamic factors. 

The electrical descriptors describe molecular dipole moment 

together with the internal distribution of negative charges whereas 

topological descriptors reveal atomic quantities and their types and 

connection patterns. 
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2.1.1. The methodology based on QSPR  

The procedure of utilizing QSPR method was summarized in Figure 1. 

 

Figure 1. The procedure of the present work to estimate boiling point and melting point of different fatty acids. 

2.2. Datasets 

The data set provided for the boiling points were presented in Table 3.1. In the cases of melting point, we utilized the dataset provided in the Ref. 

[19]. An example from these datasets were presented in Table 1 and Table 2 

Table 1. The experimental boiling points (bps) of 26 studied fatty acids [20-21]. 

Class Fatty acid Boiling points (oC) 

A Isoamy Laurate 132.10 

B Caproic 205.8 

C Caprylic 239.7 

A Methyl laurate 255.14 

B Capric 260 

C Lauric 298.9 

A Ethyl palmitate 309.13 

B Ethyl linoleate 319.16 

C Myristic 326.2 

A Ethyl oleate 331.52 

B Ethyl ricinoleate 344.01 

C Palmitic 351.5 

A Stearic 371.1 

B Triolein 414.91 

C Tripalmitin 412.69 

A Methyl laurate 263 

B Methyl myristate 296 

C Methyl palmitate 338 

A Methyl stearate 351 

Compounds  
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Production 

descriptors 
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modeling  
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B Methyl oleate 351 

C Methyl linoleate 351 

A Methyl linolenate 351 

B Methyl arachidate 370 

C Methyl behenate 387 

A Methyl erucate 406 

B Methyl lignocerate 407 

Table 2. The experimental melting points (mp) of different fatty acids. More experimental data was extracted from Ref. [19] 

Class Fatty acid Melting points (oC) 

A 3-7-11-15-Tetramethylhexadecanoic acid -65.0 

B Cis-cis-cis-cis-6-9-12-15-Octadecatetraenoic acid -57.0 

C Cis-cis-cis-cis-5-8-11-14-Eicosatetraenoic acid -49.0 

A Cis-cis-cis-cis-cis-cis-4-7-10-13-16-19-Docosahexaenoic acid -45.0 

B Pentanoic acid -33,0 

C 3-Methylbutanoic acid -29.0 

A Cis-cis-cis-9-12-15-Octadecatrienoic acid -11.0 

B Cis-cis-9-12-Octadecadienoic acid -7.0 

C Heptanoic acid -7,0 

A Butanoic acid -5.0 

B cis-9-Tetradecenoic acid -4,0 

C Cis-cis-5-13-Docosadienoic acid -4,0 

A Hexanoic acid -3,0 

B cis-9-Hexadecenoic acid 0,0 

C 12-Hydroxy-cis-9-octadecenoic acid 5,0 

A Nonanoic acid 12,0 

B cis-9-Octadecenoic acid 13.0 

C cis-11-Octadecenoic acid 15.0 

A Octanoic acid 16.0 

B cis-trans-9-11-Octadecadienoic acid 20,0 

C trans-cis-10-12-Octadecadienoic acid 23.0 

A cis-11-Eicosenoic acid 24.0 

B cis-9-Eicosenoic acid 24,0 

C 9-Decenoic acid 26.0 

A cis-5-Eicosenoic acid 26.0 

B Undecanoic acid 28,0 

C cis-6-Octadecenoic acid 29.0 

A Decanoic acid 31.0 

B cis-12-13-Epoxy-cis-9-octadecenoic acid 32.0 

C trans-trans-cis-9-11-13-Octadecatrienoic acid 32,0 
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The initial and most crucial step in QSPR modeling involves the 

collection and selection of a desirable data set that can be 

determined from a chemical family with the laboratory-measured 

property of interest, under consistent conditions of pressure and 

temperature, and with high precision measurements. It is essential 

to ensure that the experimental errors are not significant, as an 

accurate and reliable model relies on precise measurements, and 

lower measurement errors improve the predictability of the model 

[17]. 

Another vital consideration in dataset selection is to ensure that it 

is sufficiently extensive and diverse. Larger datasets lead to the 

development of more robust predictive models, while greater 

diversity in compounds enables the model to effectively predict a 

wider range of substances. Therefore, key criteria for a satisfactory 

QSPR model include [22]: 

a: Diversity of the dataset together with adequate size. 

b: Measurements which often were conducted under consistent and 

reproducible conditions. 

The QSPR modeling of forecasting the boiling point and melting 

point of fatty acids utilizes relevant data from Tables 1 and 2. This 

document demonstrates how the graphical user interface of 

ChemBioDraw Ultra version 12.0 produced three-dimensional 

molecular representations.  

2.3. Multiple linear regression (MLR) analysis 

In this work, the multiple linear regression (MLR) analysis was 

utilized for investigating the relationship that stands among the 

response variable and predictor variables and also for estimating 

the response variable according to the predictor variables. MLR fits 

a linear model of the form as following Eq (1)[23]: 

 

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ 𝑏𝑘𝑋𝑘 + 𝑒 (1) 

 

The dependent variable appears as Y while the independent 

variables appear as X1, X2,..., Xk together with e being the random 

error and b0, b1, b2,..., bk indicating the estimable regression 

coefficients. During the MLR approach the selection process 

chooses regression coefficients which minimize the square value of 

estimation-observation discrepancies. The primary task in 

multilinear regression involves obtaining the optimal regression 

coefficient estimations (b0, b1, b2, . . ., bk) to reduce the error sum 

(e) while achieving the most accurate data match. The calculation 

happens through several statistical methods with the least squares 

method being among them. 

Multiple Linear Regression serves numerous research domains 

including economics and social sciences and engineering and data 

science to discover predictive patterns from several predictor 

variables [24-26]. Scientists can use this method to determine 

independent variable contributions separately as well as understand 

their combined influence on the dependent variable [27]. 

2.4. Validation and verification 

Regarding validation and verification of the used models in this 

study, some analysis was incorporated in verifying the correctness 

of the correlations and using them to estimate bp and mp attributes. 

It usually consists of elements similar to other various training sets 

as well as well recognized qualities based on experimental 

evidence. By means of a comparison between the projected data 

against experimental information derived from the literature, one 

may investigate and assess the predictive power of the correlation . 

One may evaluate the predictive capacity of the correlations by 

using two regression correlation coefficients of the cross-validation 

R2cv as well as R2.Popularly used and quite useful for evaluating 

the dependability of statistical methods was the cross validation 

R2cv. In this process, updated data sets were created by 

eliminating one or group of objects in every case as well as for 

every statistics set using an input-output model based on the 

applied approach. Its precision helps one to project the reactions of 

the residual data, so influencing also. 

The R2adj (attuned coefficient of a manifold linear regression 

determination) model has been introduced as terms of the 

coefficient of determination as the following relation [28]: 

 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 

(2) 

 

Considering a data set, where ni stands for the number of 

compounds, and pi shows the number of descriptions. 

3. Results 

     Many non-empirical molecular descriptors may be obtained 

using the Codessa software applied in current work. We considered 

the preliminary regression analysis and derived the complete 

original Codessa descriptors. Furthermore used was the BMLR 

regression, thus the pool of the descriptors gets even smaller. With 

regard to BMLR correlations for all the included substances, the 

primary goal was to find the ideal number of descriptors which fit 

the instance of data given in Table 1 and Table 2. At last, suitable 

equations for varying numbers of descriptors were discovered. 

Respectively, Figure 4.1 and 4.2 exhibits the behavior of 

descriptors on the R2 as well as R2adj for bp andmp parameters. 

As advised in the Ref. [19], the R2 values lower than 0.02 is 

chosen to serve as a breakpoint criteria to prevent from the over 

parameterization . 

Table 3 and Table 4 present the several used elements in the 

instance of bp andmp prediction derived from the QSPR 

approaches. The models for MP and bp were constructed using 

training sets of 62 and 30 fatty acids, respectively. The optimal 

QSPR equations are characterized by the subsequent equations: 

The molecular descriptors in both models were considered as 

follows: 

A2 and B2 (PPSA-3 atomic charge) 

A3 and B3 (The number of aromatic bonds),  

A4 and B4 (Mean complementary information content),  

A5 and D5 (Balaban index),     

A6 and D6 (YZ Shadow) and 

A7 and D7 (Min atomic orbital, electronic population, and Boiling 

points (property)),  
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Table 3. Effective parameters in the use of QSPR for 30 data related to mp (X shows regression coefficients,  ∆X error, t-Test, and p-Values). 

M:  

Factors X X2-X1 t-Test p-Value 

Intercept 202.895 21.25 4.235  

A2 (cofficianent) -2.125 
0.001 

-13 
 

A3 16.5 
0.001 

24.23 
 

A4 -1.114 
0.001 

-24 
 

A5 0.256 
0.001 

12.23 
 

 

Table. 4. Effective parameters in the use of QSPR for 30 data related to bp 

M:  

Factors X X2-X1 t-Test p-Value 

Intercept 142 26.523 5.654  

B3 (cofficianent) -8.256 
0.002 

32.251 
 

B4 -12.589 
0.002 

-4.985 
 

B5 -8.54 
0.002 

-23.251 
 

 

Figure 2 shows the R2 obtained for different number of descriptors in the case of bp prediction. As can be seen, when the number of descriptors 

increased to 7, the R2 was obtained around 0.938 which can be sufficient and appropriate. As same Figure was provided to mp and the max R2 

was obtained around 0.948. 

 

Figure 2. The R2 obtained for different number of descriptors in the case of mp prediction. 
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Figure 3. The R2 obtained for different number of descriptors in the case of bp prediction. 

 

      As can be seen, we have considered a same parameter to 

evaluate the commonalities and differences between parameters. 

According to the t-test values, in the case boiling point and melting 

point, A3 and B3 showed to have the most influences. It is found 

that the most important factor for both mp and bp is the number of 

aromatic bonds. Then, in the case of boiling point A5 has a more 

effect and for melting point B5 is the most important parameters. 

In the case of both bp and mp factors, the value of linear 

correlation coefficient was determined to be less to 0.5 (among two 

different descriptors). Hence, one can presume that the considered 

descriptors A2, A3, A4 and A5 as well as B2, B3, B4 and B5 are 

independent, mutually, considering the utilized QSPR method. 

Therefore, it is found that the 7-parameter model for mp and bp 

demonstrated satisfactory statistical data correlation coefficient. 

In previous studies, two different methods have been proposed to 

validate the QSPR model [64]. The initial approach involves 

utilizing a subset of the available data to develop the model, taking 

into account the data in the bp and mp scenarios referred to as 

external validation. The subsequent approach entails employing the 

entirety of the data points to construct the model while reserving 

the validation method for internal cross-validation procedures.  As 

suggested by in Ref. [45], the second approach was utilized based 

on the following stages: 

(1) Have ordered the obtained points for both bp an mp data.  

(2) In the case of mp, 30 data points were considered and ordered 

in three subsets (A–C) and the same was considered for bp with 30 

data. 

(3) Based on these information, we provided new datasets, 

considering whole combinations of the binary sums, including (A + 

B), (A + C) and (B + C). This dataset was utilized for training tasks 

due to the limitation of data for both bp and mp. 

(4) After that the standard modeling approach of QSPR method 

consisting of the most important multiple linear regression method 

(B-MLR) has been taken into consideration for the three datasets 

mentioned the previous stage. In addition, considering each 

training set, we drive the correlation equation with the same 

descriptors corresponding to introduced models 

(5) The classical internal cross validation approach was then used 

to validation tasks.  

Eq. (3) and Eq. (4) demonstrated the boiling point and melting 

point that are considerably related to sets of molecular descriptors, 

including topological and electrostatic properties. As mentioned 

different initial models firstly were evaluated based on statistical 

analysis the data provided previously and the mentioned relations 

were selected for analysis.  

Between all data, for mp 30% of data was utilized to train the 

model and for bp this procedure was applied and the results were 

taken into account for external validation datasets. The QSPR 

efficiency was considered in the case of prediction tasks using the 

R2adj. The mean values of adjusted R2(Fit) and R2(Pred) were 

determined to be near to 0.913 and 0.925, respectively.  

After initial investigations, it was determined that the following 

relations: 

 

bp = −20123.4 + 1462.2 ×   A1 − 0.8 ×  A2 − 5.2  × A3 − 5.8  A4 +

 0.3 × A5 - 5.4 × A6 + 35878 ×  A5  

(3) 

𝑚𝑝 = −72.58 + 25.89 × 𝐵3 + 42.23 × 𝐵4 − 32 × 𝐵5 − 1.89 × 𝐵6 + 258955 × 𝐵7 (4) 

Figure 4 and Figure 5 show the comparison between experimental against predicted data for bp and mp, respectively that can be used to detect 

any outliers and to prompt indication of the accuracy. 
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Figure 4. The comparison of experimental data against predicted data for bp 

 
Figure 5. The comparison of experimental data against predicted data for mp 

Tables 5 and 6 show the different QSPR models obtained using 5- parameter models for bp and mp, respectively. The models were established 

using training set consisted of 30 and 26 data in cases of bp and mp constituted, respectively.  

 

Table 5. QSPR validation for 5-parameter model related to bp prediction 

Training data N R2 Test set N R2(pred) 

A+B 18 0.932 C 8 0.941 

A+C 17 0.937 B 9 0.952 

B+C 17 ≈0.94 A 9 0.962 

 

Table 6. QSPR validation for 5-parameter model related to mp prediction 

Training data N R2 Test set N R2(pred) 

A+B 20 0.941 C 10 0.947 

A+C 20 0.948 B 10 0.968 

B+C 20 0.950 A 10 ≈0.95 
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In Table 5, the results obtained from the QSPR validation tasks 

were evaluated in the case of the 5-parameter model efficiency to 

predict bp. As can be seen Table was divided into two sections, the 

first was Training data and the second was Test set showed the 

performance of the model for different combinations of training 

data (A, B, C) and the corresponding R2 values for each dataset. 

(a): For the Training data section: 

- Three combinations of training data are considered: A+B, A+C, 

and B+C. 

- N stands for the number of data points in each training set. 

- R2 indicated the coefficient of determination, which can be 

measured how well the model fits the training data. It quantifies the 

proportion of the variance in the dependent variable (bp) that is 

predictable from the independent variables (molecular descriptors). 

- The R2 values for the three training sets are approximately 0.932, 

0.937, and 0.940, respectively. 

(b): For the Test set section: 

- The table provides three different test sets: A, B, and C, each 

containing a different number of data points. 

- N represents the number of data points in each test set. 

- R2(pred) shows the predictive R2, which measures how well the 

model performs on unseen data, i.e., the ability to generalize to 

new data points not used during training. 

- The R2(pred) values for the three test sets were determined to be 

0.941, 0.952, and 0.962, respectively. 

Overall, the 5-parameter model demonstrated good performance in 

predicting the boiling points of fatty acids. The R2 values for both 

training and test sets were relatively high, indicating a strong 

correlation between the molecular descriptors and the boiling 

points. The model's predictive capability, as evidenced by the R2 

(pred) values, showed that it can generalize well to unseen data, 

providing reliable predictions. 

Table 6 demonstrated the QSPR validation results for the 5-

parameter model related to melting point (mp) prediction. Similar 

to the boiling point model, the 5-parameter model for melting point 

prediction also showed strong performance. The high R2 values for 

both training and test sets indicated a good correlation between the 

molecular descriptors and the melting points. The R2(pred) values 

demonstrated the model's ability to generalize well to new data, 

making it a reliable predictor for the melting points of fatty acids. 

As a results, the 5-parameter models for both bp and mp prediction 

exhibited promising results, with high R2 values for both training 

and test datasets. The models showed good predictive capabilities, 

suggesting that they can be valuable tools for estimating the bp and 

mp of fatty acids based on their molecular descriptors. However, 

further external validation using independent datasets and  

considering additional molecular descriptors could enhance the 

models' reliability and generalization performance. The developed 

QSPR model based on non-empirical molecular descriptors can 

predict the boiling point and melting point of fatty acids. The 

model was trained and validated using a dataset of various fatty 

acids with known boiling and melting points. By providing the 

QSPR model with a chemical structure of a fatty acid, it can 

calculate the molecular descriptors for that compound and use 

them to predict its boiling and melting points. However, it is 

essential to consider that the accuracy of the predictions may be 

influenced by the similarity of the compound to those in the 

training dataset. For accurate predictions, it is recommended to 

validate the model's performance on external datasets or 

experimental measurements of new and unseen chemical 

structures . Therefore, the developed QSPR model can be utilized 

as a tool for predicting the boiling and melting points of fatty acids 

based on their molecular structures, but caution should be 

exercised when applying the model to compounds significantly 

different from those in the training data. 

4. Conclusion 

The Quantitative Structure-Property Relationship (QSPR) models 

developed in this study provide reliable predictions for the melting 

and boiling points of fatty acids and their derivatives. Using a 

combination of molecular descriptors and multiple linear 

regression (MLR), we successfully established predictive models 

that correlate the chemical structure of fatty acids with their 

thermal properties. The models demonstrated strong predictive 

power, with high coefficients of determination (R²) for both 

training and test datasets, reaching up to 0.948 for melting points 

and 0.938 for boiling points. The cross-validation R² values further 

confirmed the robustness of the models, indicating their ability to 

generalize well to unseen data. These findings highlight the 

effectiveness of QSPR modeling in predicting the thermal 

properties of fatty acids, offering a valuable tool for the design and 

optimization of fatty acid derivatives in various industrial 

applications. Future work could further enhance the model's 

predictive accuracy by incorporating additional molecular 

descriptors or expanding the dataset to include a broader range of 

fatty acid derivatives. 
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